Geophysical imaging of stimulated microbial biomineralization.

نویسندگان

  • Kenneth H Williams
  • Dimitrios Ntarlagiannis
  • Lee D Slater
  • Alice Dohnalkova
  • Susan S Hubbard
  • Jillian F Banfield
چکیده

Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction under dynamic flow conditions. Alterations in sediment characteristics resulting from microbe-mediated sulfide mineral precipitation were concomitant with changes in complex resistivity and acoustic wave propagation signatures. The sequestration of zinc and iron in insoluble sulfides led to alterations in the ability of the pore fluid to conduct electrical charge and of the saturated sediments to dissipate acoustic energy. These changes resulted directly from the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. Scanning and transmission electron microscopy (SEM and TEM) confirmed the sulfides to be associated with cell surfaces, with precipitates ranging from aggregates of individual 3-5 nm nanocrystals to larger assemblages of up to 10-20 microm in diameter. Anomalies in the geophysical data reflected the distribution of mineral precipitates and biomass over space and time, with temporal variations in the signals corresponding to changes in the aggregation state of the nanocrystalline sulfides. These results suggest the potential for using geophysical techniques to image certain subsurface biogeochemical processes, such as those accompanying the bioremediation of metal-contaminated aquifers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geostatistical Modeling of Electrical Resistivity Tomography for Imaging Porphyry Cu Mineralization in Takht-e-Gonbad Deposit, Iran

This work presents the application of a geostatistical-based modeling approach for building up electrical properties acquired from a geophysical electrical tomography survey deployed for the purpose of porphyry Cu exploration at the Takht-e-Gonbad deposit, in the central domain of Iran. Electrical data were inverted in 2D along several profiles across the main favorable zones of Cu-bearing mine...

متن کامل

Origin of microbial biomineralization and magnetotaxis during the Archean.

Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branc...

متن کامل

Diversity and ecology of and biomineralization by magnetotactic bacteria.

Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-bounded crystals of magnetite (Fe3 O4 ) and/or greigite (Fe3 S4 ) called magnetosomes. MTB play important roles in the geochemical cycling of iron, sulfur, nitrogen and carbon. Significantly, they also represent an intriguing model system not just for the study of microbial biomineralization but also for magnetoreception, prokar...

متن کامل

Role of Fungi in the Biomineralization of Calcite

In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers o...

متن کامل

Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science & technology

دوره 39 19  شماره 

صفحات  -

تاریخ انتشار 2005